stronger in tarbuttite than in adamite, and lends support to the contention that it is also stronger in paradamite than in adamite.

The author is grateful to Dr Tony Smith, Department of Physics, University of Manitoba, for providing a crystal of paradamite, to Dr R. B. Ferguson for discussions on bond strengths in crystals, and to the Materials Research Institute, McMaster University, Hamilton, for their cooperation in the collection of the intensity data. Financial support was provided by the National Research Council of Canada (grant to R. B. Ferguson) and the University of Manitoba.

References

Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A 29, 266-282.

Cocco, G., Fanfanı, L. \& Zanazzı, P. F. (1966). Z. Kristallogr. 123, 321-329.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Finger, L. W. (1969). RFINE. A Fortran IV Computer Program for Structure Factor Calculation and LeastSquares Refinement of Crystal Structures. Geophysics Laboratory, Carnegie Institute, Washington (unpublished).
Finney, J. J. (1966). Am. Mineral. 51, 1218-1220.
Hawthorne, F. C. (1976). Can. Mineral. 14, 143-148.
Hawthorne, F. C. \& Ferguson, R. B. (1975). Acta Cryst. B31, 1753-1755.
SwitZer, G. (1956). Science, 123, 1039.

Acta Cryst. (1979). B35, 722-724

Refinement of $\mathbf{3 C}$ Pyrrhotite, $\mathrm{Fe}_{\mathbf{7}} \mathbf{S}_{\mathbf{8}}$

By Asao Nakano, Masayasu Tokonami and Nobuo Morimoto Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka 565, Japan

(Received 6 October 1978; accepted 16 November 1978)

Abstract

A metastable form of $\mathrm{Fe}_{7} \mathrm{~S}_{8}$, trigonal, $P 3_{1} 21$, $a=6.8652$ (6), $c=17.046$ (2) $\AA, Z=3, D_{x}=4.59$ $\mathrm{Mg} \mathrm{m}{ }^{-3}$. The crystal structure was refined to $R=$ 0.043 for 1026 reflections. The apparent space group $P 6_{2} 22$ is explained by the twin-related domains with trigonal symmetry. The supercell contains ordered vacancies in alternating Fe layers normal to the c direction. The Fe atom is octahedrally coordinated with a mean $\mathrm{Fe}-\mathrm{S}$ distance of $2.445 \AA$.

Introduction. Fleet (1971) determined the structure of $3 C \mathrm{Fe}_{7} \mathrm{~S}_{8}$ assuming the twin-related domains with space group $P 3_{1}$. The structural study of synthetic $3 C \mathrm{Fe}_{7} \mathrm{~S}_{8}$ was made by Nishiguchi (1977), also based on $P 3_{1}$. Their structures are essentially the same as that of $3 C$ $\mathrm{Fe}_{7} \mathrm{Se}_{8}$ reported by Okazaki \& Hirakawa (1956) which has the symmetry $P 3_{1} 21$. However, Fleet and Nishiguchi did not examine the possibility of $P 3_{1} 21$. This study has been carried out to obtain the true symmetry and to determine precisely the actual displacements of atoms from the ideal structure.

The $3 C \mathrm{Fe}_{7} \mathrm{~S}_{8}$ was prepared by the dry method and quenched from 973 K into ice water. A spherical crystal, $140 \mu \mathrm{~m}$ in diameter, was used for data collection on an automatic four-circle diffractometer, using the $\omega-2 \theta$ scan technique $\left(2 \theta_{\max }=65^{\circ}\right)$ with Mo
$K \alpha$ radiation $(\lambda=0.71069 \AA)$, monochromatized by pyrolytic graphite. The observed Laue symmetry $(6 / \mathrm{mmm})$ and the systematic absences ($00 l$ with $l \neq 3 n$) indicate an apparent space group $P 6_{2} 22$ or $P 6_{4} 22$. Because the ordered 3C type of Okazaki \& Hirakawa's (1956) model must have a trigonal symmetry of $P 33_{1} 21$ $\left(P 3_{2} 21\right)$ or $P 3_{1}$ (or $P 3_{2}$), the apparent $P 6_{2} 22$ (and/or $P 6422$) symmetry of the specimen has been explained by many small domains related by 180° rotation about [001] and/or by reflection across (100) in the specimen.

Observed structure factors, $F_{o}(h k l)$, were calculated from the observed intensities, $I_{o}(h k l)$, by the following relation:

$$
\begin{gathered}
\left|F_{o}(h k l)\right|^{2}=(L p)^{-1} A E_{s} I_{o}(h k l) I_{c}(h k l) /\left[I_{c}(h k l)\right. \\
\left.+I_{c}(k h l)\right]
\end{gathered}
$$

$F_{o}(h k l)$ were corrected for the usual Lorentz and polarization factors $(L p)$, absorption $[A, \mu(\mathrm{Mo} K \alpha)=$ $12.8 \mathrm{~mm}^{-1}$, transmission factors between 0.27 and $0.33]$ and isotropic secondary extinction $\left[E_{s}, c=\right.$ $0.59(1) \times 10^{-5} ;$ Zachariasen, 1963]. $I_{c}(h k l)$ and $I_{c}(k h l)$ were calculated at each cycle of the leastsquares refinements, and the computing program ORFLS (Busing, Martin \& Levy, 1962) was modified for this purpose. The scattering factors for neutral (c) 1979 International Union of Crystallography

Table 1. Positional parameters for $3 \mathrm{CFe}_{7} \mathrm{~S}_{8}$
Standard deviations of the respective parameters are in parentheses.

	x	y	z
$\mathrm{Fe}(1)$	$0.0234(4)$	0	$\frac{1}{3}$
$\mathrm{Fe}(2)$	$0.0283(4)$	0	$\frac{5}{6}$
$\mathrm{Fe}(3)$	$0.4641(3)$	0	$\frac{5}{6}$
$\mathrm{Fe}(4)$	$0.0085(5)$	$0.5268(3)$	$0.82504(5)$
$\mathrm{Fe}(5)$	$0.0079(5)$	$0.5125(4)$	$0.33564(4)$
$\mathrm{S}(1)$	$0.1641(4)$	$0.3380(6)$	$0.75301(7)$
$\mathrm{S}(2)$	$0.1671(4)$	$0.8419(4)$	$0.74183(7)$
$\mathrm{S}(3)$	$0.6608(6)$	$0.3321(6)$	$0.75129(12)$
$\mathrm{S}(4)$	$0.6624(6)$	$0.8352(4)$	$0.75642(7)$

atoms were taken from International Tables for X-ray Crystallography (1974). The number of observed structure factors was 1026 including those with $F_{o}=0$.

The initial atomic parameters for the $P 3$, model were taken from Nishiguchi's (1977) final model. Those for the $P 3,21$ model were obtained by inserting diad axes into Nishiguchi's final model of $P 3_{1}$ with minimum shifts of atoms. The isotropic temperature factors were applied for atoms of both models except for the Fe atoms lying on the diad axis of the $P 3_{1} 21$. After several least-squares cycles, the weighted R factors for the $P 3_{1}$ and $P 3,21$ models were reduced to 0.040 and 0.038 , respectively. At this stage, the $P 3_{1}$ model was discarded. Applying the anisotropic temperature factors to all atoms, the $P 3,21$ model was refined and the weighted and unweighted R factors converged to 0.033 and 0.043 , respectively. The final atomic parameters are given in Table 1.*

Discussion. The supercell of $3 \mathrm{Ce}_{7} \mathrm{~S}_{8}$ is composed of 12 NiAs-type subcells and the vacant sites for Fe atoms are distributed in every second layer as in other types of pyrrhotites (Morimoto, 1978) so that they are as far as possible from each other. All the Fe atoms are octahedrally coordinated with S atoms and the octahedra are not much distorted.*
The distributions of vacancies and $\mathrm{Fe}-\mathrm{Fe}$ distances are illustrated schematically in Fig. 1. The structure has both filled and vacancy-containing rows of Fe atoms along the c axis. In the basal layers, all the $\mathrm{Fe}-\mathrm{Fe}$ distances are longer than $3.0 \AA$, with the mean value of $3.437 \AA$, except for the $\mathrm{Fe}(2)-\mathrm{Fe}(3)$ distance of 2.992 $\AA . \mathrm{Fe}(3)$ is displaced by $0.25 \AA$ from the ideal site towards Fe (2). All the $\mathrm{Fe}-\mathrm{Fe}$ distances along the c axis are less than $3.0 \AA$. Fe(4) is displaced by $0.14 \AA$ along

[^0]

Fig. 1. Structure of $3 \mathrm{CFe}_{7} \mathrm{~S}_{8}$. Only Fe atoms are shown. Crystallographically different atoms are indicated by numbers in solid circles. The $\mathrm{Fe}-\mathrm{Fe}$ distances are given by the numbers near the lines connecting the atoms. The thick lines represent the $\mathrm{Fe}-\mathrm{Fe}$ distances less than $3.0 \dot{A}$.

Fig. 2. Comparison of the Fe clusterings in the structures of (a) $3 C \mathrm{Fe}_{7} \mathrm{~S}_{8}$ and (b) $4 C \mathrm{Fe}_{7} \mathrm{~S}_{8}$ both projected on (001). Solid circles represent the filled rows and open circles the vacancy-containing ones. Thick lines represent the $\mathrm{Fe}-\mathrm{Fe}$ couplings. Shaded areas represent the unit cells of $3 C$ and $4 C \mathrm{Fe}_{7} \mathrm{~S}_{8}$.
the c axis towards the nearest vacant site and by 0.18 \AA in the basal layer towards $\mathrm{Fe}(2)$. The Fe atoms seem to move not only to reduce the vacancy space but also to form coupling between Fe atoms as in the 4 C type (Tokonami, Nishiguchi \& Morimoto, 1972). The triangular groups reported in the structure of troilite, FeS (Bertaut, 1956; Evans, 1970), are not observed in the $3 C$ structure.

According to Goodenough (1962), the critical value below which the d electrons of Fe atoms must be treated as a collective system rather than as a localized model is about $3.0 \AA$ in the structure of FeS. In this sense, both an infinite row and a five-Fe-atoms row terminated by vacancies are considered to be collective units. The infinite row is connected with the five- Fe atoms row through the $\mathrm{Fe}(2)-\mathrm{Fe}(3)$ couplings in the
basal layers resulting in an infinite columnar unit along the c axis. In the $4 C$ type structure, the clustering is the complicated three-dimensional chain (Tokonami, Nishiguchi \& Morimoto, 1972). Thus the $3 C$ and $4 C \mathrm{Fe}_{7} \mathrm{~S}_{8}$ structures differ not only in the arrangement of vacancies but also in the shape of the Fe clusterings (Fig. 2).

The authors express their thanks to Drs K. Koto and T. Asai of this Institute for their helpful suggestions and discussions, and also to Dr H. Horiuchi for his support in experiments.

References

Bertaut, E. F. (1956). Bull. Soc. Fr. Minéral. Cristallogr. 79, 276-292.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Evans, H. T. (1970). Science, 167, 621-623.
Fleet, M. E. (1971). Acta Cryst. B27, 1864-1867.
Goodenough, J. B. (1962). J. Appl. Phys. 33, 1197-1 199.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Morimoto, N. (1978). Rec. Progr. Nat. Sci. Jpn (Science Council of Japan), 3, 183-206.
Nishiguchi, M. (1977). MS Thesis, Osaka Univ. (In Japanese.)
Okazakı, A. \& Hirakawa, K. (1956). J. Phys. Soc. Jpn, 11 , 930-936.
Tokonami, M., Nishiguchi, K. \& Morimoto, N. (1972). Am. Mineral. 57, 1066-1088.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1 144.

Acta Cryst. (1979). B35, 724-725

Refinement of the Crystal Structure of Silicon Diphosphate, $\mathrm{SiP}_{2} \mathrm{O}_{7}$ AIV - A Phase with Six-Coordinated Silicon

By K.-F. Hesse
Mineralogisch-Petrographisches Institut der Universität Kiel, 2300 Kiel, Federal Republic of Germany

(Received 20 October 1978; accepted 23 November 1978)

Abstract

Synthetic $\mathrm{SiP}_{2} \mathrm{O}_{7}$ AIV, monoclinic, $P 2_{1} / n$, $a_{o}=4.713$ (1), $b_{o}=11.987$ (2), $c_{o}=7.628$ (2) $\AA, \beta=$ $91.20(2)^{\circ}, Z=4 ; R$ (unweighted) $=0.050, R$ (weighted) $=0.035 .\left[\mathrm{PO}_{4}\right]$ tetrahedra are linked in pairs to form $\left[\mathrm{P}_{2} \mathrm{O}_{7}\right]$ groups. Si is octahedrally coordinated, with a mean $\mathrm{Si}-\mathrm{O}$ distance of $1.766 \AA$.

Introduction. $\mathrm{SiP}_{2} \mathrm{O}_{7}$ was prepared by Liebau, Bissert \& Köppen (1968). $\mathrm{A} \mathrm{SiO}_{2} \cdot m \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ mixture was held for 64 h at 1223 K in a silica-glass ampoule.

The structure was solved by Liebau \& Hesse (1971) by means of multiple-film methods using $h k 0$ and 0 kl reflections only; $R(h k 0)$ was 8.7% and $R(0 k l)$ was 9.9%. The aim of the present work was to refine the structure from general $h k l$ reflections.

A crystal measuring $0.1 \times 0.06 \times 0.03 \mathrm{~mm}$ was used for data collection on an automatic Philips PW 1100 four-circle diffractometer with graphite-monochromatized Mo Ka radiation ($\lambda=0.7107 \AA$) and a $\theta-$ 2θ scan $\left(\theta_{\max }=30^{\circ}\right.$). The intensities of 2804 crystallographically independent reflections were measured; 608 of these had $\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)$ and were used in the subsequent refinement. The standard deviation, $\sigma\left(F_{o}\right)$, was estimated from the formalism presented by Stout \& Jensen (1968).

Lorentz and polarization corrections were applied, but no correction was made for absorption $\ \mu($ Mo $K \alpha)$ $\left.=1.251 \mathrm{~mm}^{-1}\right]$. The structure as determined by Liebau \& Hesse (1971) was proven using Fourier techniques and was refined by full-matrix least-squares analysis with the program ORFLS of Busing, Martin \& Levy (1962), starting with the atomic coordinates given by Liebau \& Hesse (1971). (The x coordinates of their Table 1 are incorrect and have to be replaced by $0.5-x$.) Isotropic refinement of the crystal structure

Table 1. Positional $\left(\times 10^{4}\right)$ and thermal parameters with standard deviations

	x	y	z	$B\left(\AA^{2}\right)$
	x	y	$z(3)$	
Si	$2195(4)$	$8505(2)$	$3474(3)$	$0.48(3)$
$\mathrm{P}(1)$	$7991(4)$	$5182(2)$	$1962(2)$	$0.35(3)$
$\mathrm{P}(2)$	$7203(4)$	$6970(2)$	$4483(3)$	$0.34(3)$
$\mathrm{O}(1)$	$7073(10)$	$5725(4)$	$3743(6)$	$0.44(8)$
$\mathrm{O}(2)$	$805(0)$	$4645(4)$	$2364(6)$	$0.60(9)$
$\mathrm{O}(3)$	$5788(10)$	$4350(4)$	$1412(6)$	$0.45(9)$
$\mathrm{O}(4)$	$8249(10)$	$6109(4)$	$651(6)$	$0.57(8)$
$\mathrm{O}(5)$	$6224(9)$	$6873(4)$	$6315(6)$	$0.34(8)$
$\mathrm{O}(6)$	$215(10)$	$7364(4)$	$4303(6)$	$0.53(9)$
$\mathrm{O}(7)$	$5153(9)$	$7624(4)$	$3379(6)$	$0.51(9)$

© 1979 International Union of Crystallography

[^0]: * Lists of structure factors, thermal parameters and interatomic distances and angles have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34077 (8 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

